AIAA JOURNAL
Vol. 47, No. 7, July 2009

Technical Notes

Blunted-Cone Heat Shields
of Atmospheric Entry Vehicles

Eleanor C. Button,* Charles R. Lilley,
Nicholas S. Mackenzie, and John E. Saderf
University of Melbourne, Victoria 3010, Australia

DOI: 10.2514/1.43358

Introduction

TMOSPHERIC entry of a spacecraft generates extreme tem-

peratures (>5000 K) due to its high speed and the resulting
aerodynamic heating. Such extreme conditions require special
design considerations to ensure safe passage of the craft through the
atmosphere. One commonly employed technique is to use a heat
shield. This device protects the craft from the high temperatures
generated and also provides the necessary aerodynamic braking and
stability for controlled entry through the atmosphere.

As the vehicle travels through the atmosphere, gas molecules
interact with the heat shield, producing an aerodynamic force and
torque. To ensure controlled entry, this torque must act to stabilize
the craft should it stray from its required path. Vehicles entering the
atmosphere travel through a wide array of gas densities, resulting in
flows that range from free molecular to continuum in nature. It is
important, then, that the heat shield shape produces stabilizing
torques in all regimes. The material of the heat shield is sometimes
chosen to be ablative, which reduces the heat flux at its surface [1].
However, ablation also changes the shape of the heat shield as the
craft passes through the atmosphere and, hence, the dynamics of flow
around it.

The shape of the heat shield used varies considerably between
spacecraft, and spherical and blunted-cone geometries are often
employed. The static stability of craft with spherical heat shields, at
small angles of attack, is easily determined and requires the center of
mass of the craft to be upstream from the center of curvature of the
heat shield [1]. Sphere-cone geometries, which exhibit a conical
section blunted at the tip, present a more formidable challenge to the
calculation of their stability and are also widely used [2-5]. Here, we
use the calculus of variations to show that the generic shape of the
sphere-cone heat shield can be derived mathematically by requiring
that the aerodynamic torque be insensitive to small shape changes.
The resulting universal shape yields invariance in static stability due
to minor heat shield damage and is maximally stable.
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Theoretical Model

We use Newtonian impact theory and free molecular (FM) theory
[1]. Newtonian impact theory holds for hypersonic continuum flows
and is therefore applicable well within the atmosphere, whereas FM
theory is applicable for initial atmospheric entry during which the
atmosphere is highly rarefied. We consider the case of hypersonic
flow, which is typical for atmospheric entry, and, consequently,
ignore the thermal velocities of gas molecules. Although entry
vehicles are often spin stabilized to enhance their inherent static
stability, here we focus on static stability.

To proceed, the axisymmetric shape of the heat shield is
represented in spherical polar coordinates by the function r = f(6),
where r = 0 is the center of mass of the vehicle, 6 is the zenith angle
from the z axis, and 6 = 0 corresponds to the forefront point on the
heat shield; see Fig. 1. The angle of attack, ®, is defined as the
rotation angle of the vehicle about an axis perpendicular to the z axis
and is considered to be small, so that the shadowing of the shield is
eliminated. This axis passes through the center of mass and shall
henceforth be referred to as the i axis, with corresponding unit vector
i; see Fig. 1. For small ®, the torque acting on the vehicle is
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Fig. 1 Schematic of heat shield geometry, showing coordinate system
and ®, which defines the direction of gas flow relative to the frame of
reference of the vehicle. The i axis is perpendicular to the page.
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Fig. 2 Universal heat shield shape; the center of mass (dot) is the
reference. Axes correspond to a scaled length normalized by the distance
of the center of mass to the front of the heat shield.
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where p is the gas density, U is the speed of the spacecraft, 1 is the
fraction of collisions that result in specular reflection,
F(0) = f'cos — fsin6, G(0) = fcos 6 + f'sin 6, and 6, defines
the extension of the heat shield; see Fig. 1. Note the different
expressions for T in the FM and continuum regimes. A torque in the
positive i direction indicates a stabilizing torque.

Derivation of Heat Shield Shape

We use the calculus of variations [6] to obtain the heat shield shape
that yields invariance in torque, that is, a small perturbation to the
shape does not change the resulting torque; our solution applies to
small angles of attack, as specified earlier. The value of f(6y) is fixed,
whereas the front end of the heat shield is required to be flat, that is,
f'(0) =0. No other restriction is placed on the form of f(6).
Application of the Euler-Lagrange equation then yields

fO(sin@—3sin30) + 641 fsin*0cos O + f°(5sinf — 3sin36)
—4f5f'(cos—3cos30) +2f2f3sinO[f' (5 + 27 cos26)
—4f"sin20] + 8> f" cos20sin O + 2f* f'sin O[f' (3 + 11 cos26)
+ 121" sin20) + 413 f?[f' (3 cos 30 — cos )
+3f"(sinf—sin360)] =0 )

for both continuum and FM flows. The resulting differential equation
is sufficiently complex that numerical methods are required for its
solution.T All distances are subsequently normalized with respect to
the distance between the center of mass of the craft and the front of
the heat shield, that is, f(0) = 1. This yields the unique curve in
Fig. 2 that exhibits invariance in torque for axisymmetric shape
perturbations about the z axis. It is convenient to describe a cross
section of the heat shield through the origin in Cartesian coordinates;
x is defined as the perpendicular distance from the z axis to the
surface in Fig. 2.
Although this solution is derived assuming axisymmetric
perturbations to the heat shield shape, it also applies to non-
axisymmetric shapes that possess a circular rim at 8 = 6,. Such
nonaxisymmetric shapes would yield three Cartesian components
for the torque, in general. Importantly, the component that dictates
the static stability of the vehicle is in the i direction (defined earlier).
Implementation of the calculus of variations to this torque com-
ponent, for such nonaxisymmetric geometries, would yield a single
partial differential equation for the heat shield shape, for which the
independent variables are the zenith angle 6 from the z axis and
the azimuthal angle ¢ about the z axis. The boundary conditions for
the shape at 6 =0 and 6, would remain unchanged from the
axisymmetric problem. As such, a solution to this governing
equation is the axisymmetric shape in Fig. 2, because this would
eliminate the ¢ dependence from the partial differential equation and
Eq. (2) would be recovered. This immediately establishes that the
derived shape yields torque invariance for both axisymmetric and
nonaxisymmetric shape perturbations about the z axis.
Interestingly, the unique shape in Fig. 2 is identical in both the
continuum and FM regimes (for arbitrary thermal accommodation),
despite the dramatically different torques experienced, and closely
resembles the sphere-cone geometry commonly used. It is important
to note that this generic shape arises naturally from the require-
ment of invariance in torque and is not explicitly specified in the
formulation. This differs from previous variational solutions, in
which the generic shape under investigation was explicitly stated.
For example, Bowman and Lewis [7] evaluated the power-law shape
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that produced minimum drag in rarefied flows, whereas Bunimovich
and Dubinskii [8] calculated the surface of revolution for a specified
length and diameter that gives minimum drag for varying degrees of
rarefaction. These are in contrast to the present work, in which no
restriction is placed on the geometry of the body and invariance in
torque, rather than drag, is studied.

Geometry of the Heat Shield

To investigate the form of the heat shield, in Fig. 3 we present
results for its curvature as a function of x, which is the distance from
the symmetry axis. Note the distinct property of constant curvature at
the front of the heat shield for normalized distances of less than 1
from the symmetry axis; lengths are normalized by the distance from
the center of mass to the front of the heat shield. This immediately
establishes that the front of the derived heat shield is indeed a
spherical cap.

This front curvature drops rapidly to zero for normalized distances
greater than 1 from the axis, that is, a conical section. Importantly, at
large normalized distances from the axis, the minor angle of the cone
is found to be arcsin(1/+/3) & 35.26 deg, thatis, 6, ~ 144.74 deg
(Fig. 1). This shows that the widely used spherically capped cone,
which has been developed using experimental design and
computational simulation, can be derived mathematically.

The derived shape in Fig. 2 is well described in Cartesian
coordinates by the (approximate) empirical formula

F(x) =1— (2/7%)[V2nx arctan(7x/ (4+/2))
—4log(1 + (7*x%/32))] 3)

which is exact in the asymptotic limit x — O (front of heat shield).
The relative error of this approximation compared with the solution
to Eq. (2), defined as (f — 1)/(f — 1), tends to its maximum of 4%
as x — oo (conical section of heat shield). A comparison of
this approximate formula to the exact numerical solution for the
curvature and shape is given in Fig. 3, in which good agreement is
found. Also shown is the (empirically derived) hyperbola

(z—5?2-2x2=16 @)

Although a less accurate approximation (maximum error of 12%
as x — 0o, exact as x — 0) than Eq. (3), Eq. (4) gives a more
transparent geometric interpretation.

05
10}
g
S -8
= 2
g 102F
3 “
103f =2
0
104}
0.001 0.01 0.1 1 10 100

X
Fig. 3 Normalized curvature of the derived heat shield as a function of
the normalized distance from its symmetry axis. The normalized radius
of curvature at the front is 2; solid line: derived solution, dotted line:
approximation in Eq. (3), dashed line: hyperbola in Eq. (4). Inset: direct
comparison of the heat shield shapes.
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Proof of Maximum Torque

A key question is whether the derived solution gives the minimum
or maximum torque. A maximum stabilizing torque requires the
integrals in Eq. (1) to achieve their minimum value; note that
these integrals are multiplied by a negative quantity in Eq. (1). To
determine the nature of the derived extremum, we introduce
axisymmetric perturbations of type eg(6) to the solution f(6), where
€ < 1 and the only restriction on g(#) is that it must vanish at 6 = 6,,
that is, the endpoint is unchanged by the perturbation. The torque is
calculated by replacing f(0) with f(6) + €g(6) in Eq. (1). Each of
the integrals can be represented by its Taylor series expansion:
I(e) = I(0) + I'(0)e + I"(0)€?/2 + O(€%). In this expression, I(0)
is the value of the integral using the derived solution f(6), and
I'(0) =0 for all acceptable functions g(6), because this is an
equivalent statement to the Euler—Lagrange equation. If 7”7(0) > 0
for all g(6), the function f () gives a weak minimum [9] for / and a
maximum stabilizing torque. To ensure I”(0) > 0, two conditions
must be satisfied [9].

Condition I: This condition is identical for the continuum and FM
regimes and requires

sin O[f cos(20)(f> — 3f?) + f'sinO)BF> - fAH]>0 (5)

for 0 <8 <6, The inequality in Eq. (5) is satisfied for all
6, < arcsin(1/+/3), that is, all extensions of the heat shield.

Condition 2: It is also necessary that there exists a nonvanishing
function, u(6), that satisfies

Ru"+Ru +(Q —Pu=0 6)

where P, Q, and R are functions of 6 that depend on the shape of the
heat shield. Although these functions are different for the continuum
and FM regimes, the combination in which they appear in Eq. (6)
gives independence of the accommodation coefficient. Conven-
iently, the FM and continuum cases collapse onto each other,
establishing that the same function u(6) will satisfy Eq. (6) for both
the FM and continuum regimes. Solution with, for example, u(0) =
u’(0) = 1 gives a nonvanishing solution.

As the required conditions are met for both the integrals in Eq. (1),
each attains a weak minimum with f(6), implying a maximum
torque. Perturbations that can not be written as €g(6) have not been
considered in this analysis; our solution is not a strong minimum [9].
Importantly, the derived solution gives the maximum stabilizing
torque in both the continuum and FM regimes for all extensions of
the heat shield 6,. Extension of this proof to nonaxisymmetric
shape perturbations presents a more difficult challenge and is an
outstanding problem.

Stability

For continuum flows, the obtained shape is always stable,
regardless of 6; see Fig. 1. For FM flows, stability requires 6, exceed
a critical value, shown as the solid line in Fig. 4; this solid line is well
approximated by 6, = arccos([? + 1]/2). For 6, greater than this
value, the stabilizing torque increases rapidly with increasing 6,;
0y > 90 deg always yield stability.

To illustrate the utility of the derived universal shape, we present
two nominal entry vehicles with different centers of mass in Fig. 5,
the heat shield of which is immediately apparent from Fig. 2. These
vehicles possess a striking resemblance to current entry vehicles.
Both vehicles in Fig. 5 are statically stable in the continuum regime,
whereas only the top vehicle is guaranteed stability in the FM regime.
Stability of the lower vehicle in the FM regime depends on the
thermal accommodation of its surface, because 6, is less than 90 deg;
see Fig. 4. These examples illustrate that static stability may not be
possible for some vehicle configurations, because the variational
solution gives the shape that yields maximum torque, and this is
negative (unstable) in some cases.

Importantly, the design of practical heat shields involves
numerous competing factors [10], which include the expected heat
load and the craft volumetric efficiency, in addition to aerodynamic

8 (deg)

0 0.2 0.4 0.6 0.8 1
n
Fig. 4 Stabilizing torque as function of 6, and specular reflection
coefficient 7. A negative value indicates a destabilizing torque.
Normalized torque values indicated (scaling: 7o U*L3 sin(2®) /2, where
L is the distance from the center of mass to the front of the heat shield).

stability. We thus emphasize that the presented results focus on only
one component of this multi-objective problem.

The universality of the derived shape for FM and continuum flows
suggests that it applies under more general conditions. It remains to
be seen whether this shape produces similar invariance for flows in
the transition regime and when thermochemical effects are included
[1]. This would necessitate the use of computational methods, which
would eliminate the ability for mathematical analysis.
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Fig. 5 Sample entry vehicles constructed using curve in Fig. 2 showing
the center of mass (dot) and 6,.
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Conclusions

In summary, we have shown that the generic shape of the
commonly used blunted-cone can be derived and yields a
mathematically optimal solution with respect to torque invariance.
The result is a single universal shape that depends only on the center
of mass of the vehicle and is applicable in both the FM and
continuum regimes, yielding maximum torque and, hence, maxi-
mum static stability.
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